Fused and Composable
Heterogeneous Cores

Roshan Nair and Anirudh Krishna Villivalam

Single cores Fused/Composable cores

Evolution!! >

Core Fusion: Accommodating
Software Diversity in Chip
Multiprocessors

Motivation

e Software Diversity and Evolution

o Hardware can dynamically accommodate software’s parallel and sequential characteristics
e Homogenous

o Design is singular oriented with each core being identical
e Parallelism is the Future

o Software is changing to exploit more parallelism in algorithms and data structures
o Hardware needs to be able to keep up with the expected performance of such optimizations

e Independence
o Design bugs or hard faults in core may not necessarily affect the entire system

Contribution (Fused Core)

e Unit Core
o Two-issue out of order
o Private L1 instruction and data caches
o Operate fully independently

e Fuse Core

o Fuse unit cores into groups of 2 or 4
o Effectively doubling or quadrupling issue width and hardware resources available
o Multiple small cores -> one big core

e On-chip L2 Cache and Memory Controller

Contribution (Fused Core)

Tag i-Cache 0
i-Cache 1

i-Cache 2

2-word Subblock

-
.
R
N
N

!
i3
N
gt
i
'I\
i
I\
i

i-Cache 3

¥

— ‘ e (a) Independent (b) Fused

Contribution (Front End)

e FMU (Fetch Management Unit)

o 2 cycle latency from core to core (through FMU)

o Fetches are aligned with core zero having the older instructions
m Core zero will realign to maintain this invariant

o l-cache holds replicas of tag depending on fusion mode

e Prediction
o FMU gives priority based on different PC’s received from each core

e SMU (Steer Management Unit)

o Steering table : map of arch registers to core
o Free lists
o Rename maps

Contribution (Front End)

RENAME PIPELINE

RO
R1
R2
R3
R4
R5

Write Port &
Traverse
XBar Link

Traverse
XBar Link

Traverse
XBar Link &
Read Port

Write Port &
Traverse
XBar Link

GLOBAL RENAME MAP FREE LISTS
Co C1 Cc2 C3 Co C1 Cc2 C3
- - P18 Pa | | P2 P7 P1
P1 P15 P39 PO P6 P5 P9 P2
P11 = P8 P16 P18 | | P20 | | P31 | P10
P19 | | P25 P5 p2s | | P21 | {P15| | P14
]] P4 —
P33 = P3 P3
S — — —

Traverse | yp.: |ink &
XBar Link

Traverse

Read Port

STEERING TABLE
CoC1C2C3

RO
R1
R2
R3
R4
R5

0

0

0

1

1

1

1

1

Contribution (Back End)

e Operand Crossbar
o Copy instructions are stored in separate queue and wait till operands are ready

e ROB

o When fused all 4 ROBs need to communicate

o Need to maintain lockstep and may inject NOPs to force alignment
o When stalled, other ROBs need to wait as well

o Latency in signals handled by having “pre-commit” structures

e LSQ (Load Store Queue)

o Use effective address bits to obtain which core and index
o Implement a bank prediction to steer stores to correct core

Contribution (ISA)

e FUSE

o Fuse cores together for upcoming sequential operation
o Instructions and i-cache are flushed

o FMU, SMU, and i-cache are reconfigured

o No change to d-cache (inherent coherence)

o If can’t fuse -> don't

e SPLIT

o Split cores for upcoming parallel portion
o Drain in flight instructions, then reconfigure data structures
o Free for OS to re-allocate after this point

Merits

Speedup Over Two-issue
S LW DN ®ON

How well is it able to balance TLP and ILP
Fused does better on ILP
Many cores do better with TLP
Overall fused core performs ‘close’ to the better configuration
Usually an existing configuration does better than CoreFusion in one category
However in the opposite category, that same configuration does worse
Fused core can do both ‘relatively’ well

(@)

(@)

(@)

(@)

O

applu

apsi

art

I Tvo-isue

B Four-issue |

CoreFusion
Six-issue |[—

equake mesa

mgrid

swim wupwise g-mean

| I FineGrain-2i I Asymmetic-4i [Asymmetric-6i [CoarseGrain-4i] CoreFusion [___J CoarseGrain-6i
24

...................

...................

atlequake art'swim artwolf equake/bzip2 mcfbzip2 swim/equake swim/parser twolf/bzip2 twolf/parser

....................

g-mean

Failings

e Performance Factors

Not affected a lot by FMU delay

Restricted SMU bandwidth has around 3% impact
18% from communication delays

NOPs and dummies in LSQ and ROB

O O O O

Overall Conclusion

e \ery novel and interesting approach
o Fused core design lies in the domain of hardware “reconfigurability”

e Relatively easy to integrate

o No software structure changes

o Two ISA instructions added

o Allows performance scalability as software grows over time
e Not perfect

o Not able to beat performance of architectures designed for the extreme cases

Composable, Lightweight
Processors

Motivation

e Hardware designs are fixed
o Cannot optimize for both TLP and ILP
e Also homogenous
o Each core is similar, simple and low-power
e Parallelism is the Future, but Serialization is Timeless

o Design focuses on optimizing ILP, TLP as well as energy
o Software decides processor “growth” or “shrinking” for optimization

e Scalability

o Design does not need physical sharing of structures increasing scalability up to 64-wide issue

Contribution (TFlex)

e Single Core (similar to CoreFusion)
o Two-issue out of order
o Private L1 instruction and data caches
o Operate fully independently

e TFlex

o Combine single cores into any number between 2 and 32 cores

o Run-time software can optimize processor combination for ILP or TLP depending on number
of threads

o Multiple small cores -> work together as some big core. Structures not shared physically

e On-chip L2 Cache

Contribution (TFlex)

(c) One 64-wide CLP config.

(b) 8-processor CLP config.

(a) 32 2-wide CLP config.

12] [2] [2] [2]
12] [2] [L2] [L2]
12] [2] [2] [2]
2] [2] [
2] [2] [2
2] [2] [2] [2]
12] [2] [2] [2]
12] [2] [12] [2]

P

IOOEEEEE
— A | e | — el | — — Fo |
NI lE 2!
— — — — — — — —
=1l I T T G R 2!
— — o | o | o — o | |
o~ ~ o~ o~ o~ o~ 2‘
— — — — — — — -
7nu| (¥ oS

APP (o'

L2
L2
L2

L2] [L2] |L2
2

S EEEEE]E]
NP INLIANp AN IANL N
— BN od BIR ocd BIIE cd BN cd B[B ed
NP INLIANL AN AN o
~l 11 1L 1114114
NP INPIANp AN AN o
PN DO BN BN BRI BON QU BN DO QRN B |
PPPPD.D»D.E
PPPPPPPE
PPPPPPPE

Details of Instruction Set

e EDGE ISA (from TRIPS)

o Avoids distribution of each instruction by using Explicit Data Graph Execution
o Instructions are encoded into sequence of atomic blocks

m Control protocols act on large blocks (128 instructions) rather than each instruction
o Encoding also replaces message broadcasting with point-to-point communication

Details of Microarchitectural structures

e Microarchitecural structures can vary linearly
o Doubling cores -> doubling Load/Store queues, usable state in branch predictors, cache
o Structures partitioned by address -> avoids physical centralization
m Improves on limitations of TRIPS caused due to centralization

e Three hash functions used
o Block starting address partitioned based on virtual address
m Virtual address corresponds to PC
o Instructions are given IDs in order and are interleaved
o Data address partitioned based on data address with register interleaving

TFlex Operation - An Overview

e Blocks are assigned to “Owner Cores”
o Responsible for fetching block and predicting next block
o Forwards next block address to corresponding owner
o Also performs flushing, detects block completion and committing

Lifetime of block A0
in thread0 and
block BO in thread1

Lifetime of block A1
in thread0 and
block B1 in thread1

. The owner of block AO, BO

The owner of block A1, B1

threado thread1

threado thread1

threado thread1

threado thread1

(a) Fetcho

(b) Next-Block Prediction0

(c) Execution0

(d) Commit0

threado thread1

thread0 th readi

thread0 thread1

threado thread1

(e) Fetcht

(f) Next-Block Prediction1

(g) Executioni

(h) Commit1

Merits

e Design eliminates need for physical sharing, broadcasting and reconfiguration
o Increases scalability as well as allows for wider range of composing cores

e Control flow is easier due to nature of EDGE ISA
e Cores need not “combine” or “split” on a physical level
o No latency for changing mode like in Core Fusion
e Design provides reasonable performance for both serial and parallel

execution
o Similar to Core Fusion, can perform relatively well for both cases

Relative Performance
~N ©

O = NWwHOO

bezier02
rspeed01

autocor00

basefp01

Hand-Optimized Compiled Only

High-ILP Benchmarks

dither01
tblook01

Hand-
Optimized

Total AVG

Compiled Only

Low-ILP Benchmarks

Total

TRIPS

Figure 6: Performance of different applications running on 2 to 32 cores on a CLP normalized to a single TFlex core

Relative Power Efficiency

N
G

N
o

ok
4]

ok
o

0

o

44. 70.1
=zlsls - | | = o]
E|lT|IS|I8B|5 |8 2|8 EIE|2|8
Q D (=5 - | = = | S|
S = S |[& | @ D =y @ £ =

E|l9(8 | N|D |2
Fle| 8|8 |28
© ERE: o] 2

Hand-Optimized Compiled Only

High-ILP Benchmarks

Figure 8: Performance?/Watt normalized to

genalg
dither01 ==
look01

Hand-Optimized

2-core m 4-core 8-core 16-core m 32-core

[=] D [=] a o

: H,

gle|s|E|8|d|l8|8|3 e oz |
=2ls|lS|la|lE(n|[E|E|& w| & |3 |z
°Clal|ls | = S| = o = = ==

P=% =i >

s

Compiled Only

Low-ILP Benchmarks Total

a single TFlex core

Failings

e Mentions that they “envision multiple methods of controlling the allocation of

cores to threads”
o Ranges from OS monitoring to hardware structures
o Vague and not very specific though this is a key design choice if this were to be implemented

e Relies on a non-standard EDGE ISA for distributed microarchitecture
o Hard to integrate into industry

e Configuration relies on a lot of factors

o Performance, area, or energy
o In practice it is very hard to optimize one factor without considerable changes to another

Overall Conclusion

e Another interesting approach
o Design relies on software to manage configuration
e Relatively lower hardware overhead

o No duplication of structures needed
o Does not need broadcast

e Choice of non-standard ISA might solve issues with standard ISAs
o Transforming challenges into a different form which can be handled better

