
Fused and Composable 
Heterogeneous Cores

Roshan Nair and Anirudh Krishna Villivalam



Single cores

Evolution!!!

Fused/Composable cores



Core Fusion: Accommodating 
Software Diversity in Chip 

Multiprocessors



Motivation
● Software Diversity and Evolution

○ Hardware can dynamically accommodate software’s parallel and sequential characteristics

● Homogenous
○ Design is singular oriented with each core being identical

● Parallelism is the Future
○ Software is changing to exploit more parallelism in algorithms and data structures
○ Hardware needs to be able to keep up with the expected performance of such optimizations

● Independence
○ Design bugs or hard faults in core may not necessarily affect the entire system



Contribution (Fused Core)
● Unit Core

○ Two-issue out of order
○ Private L1 instruction and data caches
○ Operate fully independently

● Fuse Core
○ Fuse unit cores into groups of 2 or 4
○ Effectively doubling or quadrupling issue width and hardware resources available
○ Multiple small cores -> one big core

● On-chip L2 Cache and Memory Controller



Contribution (Fused Core)



Contribution (Front End)
● FMU (Fetch Management Unit)

○ 2 cycle latency from core to core (through FMU)
○ Fetches are aligned with core zero having the older instructions

■ Core zero will realign to maintain this invariant
○ I-cache holds replicas of tag depending on fusion mode

● Prediction
○ FMU gives priority based on different PC’s received from each core

● SMU (Steer Management Unit)
○ Steering table : map of arch registers to core
○ Free lists
○ Rename maps



Contribution (Front End)



Contribution (Back End)
● Operand Crossbar

○ Copy instructions are stored in separate queue and wait till operands are ready

● ROB
○ When fused all 4 ROBs need to communicate
○ Need to maintain lockstep and may inject NOPs to force alignment
○ When stalled, other ROBs need to wait as well
○ Latency in signals handled by having “pre-commit” structures

● LSQ (Load Store Queue)
○ Use effective address bits to obtain which core and index
○ Implement a bank prediction to steer stores to correct core



Contribution (ISA)
● FUSE

○ Fuse cores together for upcoming sequential operation
○ Instructions and i-cache are flushed
○ FMU, SMU, and i-cache are reconfigured
○ No change to d-cache (inherent coherence)
○ If can’t fuse -> don’t

● SPLIT
○ Split cores for upcoming parallel portion
○ Drain in flight instructions, then reconfigure data structures
○ Free for OS to re-allocate after this point



Merits
● How well is it able to balance TLP and ILP

○ Fused does better on ILP
○ Many cores do better with TLP

● Overall fused core performs ‘close’ to the better configuration
○ Usually an existing configuration does better than CoreFusion in one category
○ However in the opposite category, that same configuration does worse
○ Fused core can do both ‘relatively’ well



Failings
● Performance Factors

○ Not affected a lot by FMU delay
○ Restricted SMU bandwidth has around 3% impact
○ 18% from communication delays
○ NOPs and dummies in LSQ and ROB



Overall Conclusion
● Very novel and interesting approach

○ Fused core design lies in the domain of hardware “reconfigurability”

● Relatively easy to integrate
○ No software structure changes
○ Two ISA instructions added
○ Allows performance scalability as software grows over time

● Not perfect
○ Not able to beat performance of architectures designed for the extreme cases



Composable, Lightweight 
Processors



Motivation
● Hardware designs are fixed

○ Cannot optimize for both TLP and ILP

● Also homogenous
○ Each core is similar, simple and low-power

● Parallelism is the Future, but Serialization is Timeless
○ Design focuses on optimizing ILP, TLP as well as energy
○ Software decides processor “growth” or “shrinking” for optimization

● Scalability
○ Design does not need physical sharing of structures increasing scalability up to 64-wide issue



Contribution (TFlex)
● Single Core (similar to CoreFusion)

○ Two-issue out of order
○ Private L1 instruction and data caches
○ Operate fully independently

● TFlex
○ Combine single cores into any number between 2 and 32 cores
○ Run-time software can optimize processor combination for ILP or TLP depending on number 

of threads
○ Multiple small cores -> work together as some big core. Structures not shared physically

● On-chip L2 Cache



Contribution (TFlex)



Details of Instruction Set
● EDGE ISA (from TRIPS)

○ Avoids distribution of each instruction by using Explicit Data Graph Execution
○ Instructions are encoded into sequence of atomic blocks

■ Control protocols act on large blocks (128 instructions) rather than each instruction
○ Encoding also replaces message broadcasting with point-to-point communication



Details of Microarchitectural structures
● Microarchitecural structures can vary linearly

○ Doubling cores -> doubling Load/Store queues, usable state in branch predictors, cache
○ Structures partitioned by address -> avoids physical centralization

■ Improves on limitations of TRIPS caused due to centralization

● Three hash functions used
○ Block starting address partitioned based on virtual address 

■ Virtual address corresponds to PC
○ Instructions are given IDs in order and are interleaved
○ Data address partitioned based on data address with register interleaving



TFlex Operation - An Overview
● Blocks are assigned to “Owner Cores”

○ Responsible for fetching block and predicting next block
○ Forwards next block address to corresponding owner
○ Also performs flushing, detects block completion and committing





Merits
● Design eliminates need for physical sharing, broadcasting and reconfiguration

○ Increases scalability as well as allows for wider range of composing cores

● Control flow is easier due to nature of EDGE ISA
● Cores need not “combine” or “split” on a physical level

○ No latency for changing mode like in Core Fusion

● Design provides reasonable performance for both serial and parallel 
execution

○ Similar to Core Fusion, can perform relatively well for both cases





Failings
● Mentions that they “envision multiple methods of controlling the allocation of 

cores to threads”
○ Ranges from OS monitoring to hardware structures
○ Vague and not very specific though this is a key design choice if this were to be implemented

● Relies on a non-standard EDGE ISA for distributed microarchitecture
○ Hard to integrate into industry

● Configuration relies on a lot of factors
○ Performance, area, or energy
○ In practice it is very hard to optimize one factor without considerable changes to another



Overall Conclusion
● Another interesting approach

○ Design relies on software to manage configuration

● Relatively lower hardware overhead
○ No duplication of structures needed
○ Does not need broadcast

● Choice of non-standard ISA might solve issues with standard ISAs
○ Transforming challenges into a different form which can be handled better


